anti-PD-1 [2]. Simulated tumor growth curves were compared to experimental data and sensitivity study of key parameters was performed.

Results
Simulated tumor growth curves are in good agreement with experimental data. Maximum deviation of simulated control tumor volume (solid line – blue) to experimental data (blue squares) is ~25% (day 13). On the other hand, the model slightly underestimates the effect of treatment with anti-PD-1. Maximum deviation of simulated anti-PD-1 treated tumor volume (solid line – red) to experimental data (red squares) is +40% (day 17). Sensitivity study reveals that dosing and scheduling regimen does not importantly affect treatment outcome (data not shown). The most sensitive parameter of the model is MHC class I appearance. By modulating MHC class I appearance from 1% to 100%, while keeping other parameters fixed, we are able to simulate responders as well as non-responders to anti-PD-1.

Conclusions
Model predictions of antitumor response to anti-PD-1 are within expectations. The predictions might be even more reliable if model parameters were, due to their inter-patient variability and presumably dynamic nature, actually measured for every specific experiment/patient. The emphasis should be on MHC class I appearance as it might be one of the predictive biomarkers of response to anti-PD-1.

References

P305
Unravelling the immune contexture of pre-invasive lesions of the lung by multispectral imaging
Angela Vasaturo1, Celine Mascaux2, Mihaela Angelova1, Benedict Buttard1, Jean-Paul Scullier2, Jerome Galon2
1Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France; 2Aix Marseille University, APHM, Marseille, France; 3Institut Jules Bordet, Centre des Tumeurs de l’Université Libre de Bruxelles, B-1000 Brussels, Belgium, Bruxelles, Belgium
Correspondence: Jerome Galon (angela.vasaturo@gmail.com) Journal for ImmunoTherapy of Cancer 2017, 5(Suppl 2):P305

Background
Lung cancer is the leading cause of cancer deaths worldwide and despite advances in therapy, the overall survival rate for lung cancer patients remains only 15%. As most of sporadic cancers, lung cancer emerges from pre-neoplastic lesions characterized by morphological and molecular changes. If morphological changes of pre-invasive bronchial lesions are well characterized, the cause and effect relationship between those changes and the immune response is still unknown. Though, we identified gene expression alterations that suggest a role of the innate and adaptive immunity in the transformation towards carcinoma.

Methods
In order to characterize the evolution of the immune response in pre-invasive bronchial lesions, we have optimized different multispectral 7 colors immunofluorescence panels, by using the Tyramide Signal Amplification (TSA) technology.

Results
We have performed multiplex staining on FFPE human bronchial biopsies (N=114) at 8 successive morphological stages of lung squamous carcinogenesis, from normal, to low grades dysplasia, high grades, to carcinoma. Images of each biopsy have been acquired multispectrally and digitally analyzed to identify and quantify the density and the tissue distribution of different immune cell types. We aimed to characterize the immune infiltrates at different stages of carcinogenesis and elucidate the role of different cell subtypes in tumor development and progression and the possible causal relationship between the immune phenotypes in pre-neoplastic lesions and tumor progression and patient prognosis.

Conclusions
Evaluation of the immune contexture and prognostic assessment of pre-cancerous lesions of the lung may identify promising new biomarkers for early detection and targets of novel therapeutic strategies for lung cancer.

Immune Modulation, Cytokines, and Antibodies

P306
A protein extract from fermented wheat germ promotes NK cell-mediated lymphoma eradication in mouse xenografts
Gustavo Barisone1, Yunpeng Ma1, Mastewal Abuhay1, Robert O’Donnell1, Kathleen Lundeborg1, Sonia Gowda1, William Murphy1, Joseph Tuscano1
1University of California Davis, Sacramento, CA, USA; 2University of California, Sacramento, CA, USA
Correspondence: Joseph Tuscano (jgabarisone@ucdavis.edu) Journal for ImmunoTherapy of Cancer 2017, 5(Suppl 2):P306

Background
Proteomic and genomic data has allowed for the development of promising targeted agents for NHL [1]. Most have acute and chronic toxicities that limit efficacy. The use of complementary and alternative medicines has increased during the last decade. However, scientific evidence of their efficacy is scarce. Fermented wheat germ extract (FWGE) has been claimed to have anti-cancer properties in many tumor types. FWGE therapeutic activity has been attributed to its content of benzoquinones [2].

Methods
A protein fraction (FWGP) was isolated by FPLC and proteins identified by mass spectrometry. Direct cytotoxic was studied in vitro using NHL cell lines. Immunomodulatory properties were evaluated ex vivo by measure immune cell activation in human PBMCs and isolated NK cells. In vivo experiments used nu/nu NHL xenografts with or without NK cell depletion; endpoints were tumor volume and toxicity. In vivo immunomodulatory effects were evaluated by treating tumor-free BALB/c mice with FWGP and measuring NK cell killing activity and degranulation.

Results
FWGP was cytotoxic in 17 cancer cell lines (IC50 = 20-171 μg/ml in NHL, 12-27 μg/ml in colon and 70-144 μg/ml in lung) and induced apoptosis by increasing levels of caspase-3, PARP, BAK, BAD and p53, while reducing levels of AKT. FWGP increased % NK cells, production of IFN and GrB, and NK-mediated killing. In vivo efficacy was confirmed, with no toxicity, in pre-emptive and established models. In vivo treatment with FWGP+rituximab was as effective as R-CHOP, with 90% complete remission. NK depletion resulted in no response to FWGP. These results support the hypotheses that FWGP augments NK-mediated tumor killing. Proteomic profiling identified 844 proteins. An active fraction consisted of 169 proteins.

Conclusions
FWGP represents a promising immunomodulatory agent with anti-tumor activity, minimal toxicity and low cost. Our results suggest FWGP has direct lymphomacidal activity by inducing apoptosis and indirect anti-tumor efficacy by enhancing NK-mediated tumor eradication. Further experimental validation will allow translation of an “alternative” product into mainstream medicine.

References