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Metabolic control analysis in drug 
discovery and disease

Marta Cascante1*, Laszlo G. Boros2, Begoña Comin-Anduix1, 
Pedro de Atauri1, Josep J. Centelles1, and Paul W.-N. Lee2

Metabolic control analysis (MCA) provides a quantitative description of substrate flux in response to
changes in system parameters of complex enzyme systems. Medical applications of the approach include
the following: understanding the threshold effect in the manifestation of metabolic diseases; investigating
the gene dose effect of aneuploidy in inducing phenotypic transformation in cancer; correlating the contri-
butions of individual genes and phenotypic characteristics in metabolic disease (e.g., diabetes); identifying
candidate enzymes in pathways suitable as targets for cancer therapy; and elucidating the function of
“silent” genes by identifying metabolic features shared with genes of known pathways. MCA complements
current studies of genomics and proteomics, providing a link between biochemistry and functional
genomics that relates the expression of genes and gene products to cellular biochemical and physiological
events. Thus, it is an important tool for the study of genotype–phenotype correlations. It allows genes to be
ranked according to their importance in controlling and regulating cellular metabolic networks. We can
expect that MCA will have an increasing impact on the choice of targets for intervention in drug discovery.

REVIEW

The deterministic view of biology, which holds that the behavior
of a biological system ultimately is dictated by its genetic struc-
ture, is spawning an explosion of biological information. Genomic
analyses have identified hundreds of genes that control an 
ever-growing network of transcription factors, signal transducer
proteins, cell cycle regulators, and metabolic enzymes (e.g., for
review, see refs 1–3). The study of the expression of genes and of
the effect of mutations on their expression in many organisms
forms the basis of functional genomics (see refs 4,5 for reviews).
Indeed, when the expression of a sufficiently large array of genes is 
determined, it is possible to better define the functional state of an
organism by the binary outcome of such analyses6. More recently,
emphasis has shifted to understanding cellular function in terms
of the expression of the various coded proteins—so-called 
proteomics.

Even as new information on DNA, mRNA, and proteins is col-
lated, however, it does not account for the interactions between
metabolic substrates and signaling pathways. Because signaling
events lead to related metabolic reactions, which in turn modify
other metabolic functions or gene expression, it is impossible to
understand biological systems merely as a set of components of
the genome, transcriptome, proteome, or metabolome. It is
extremely difficult to separate signaling events from their related
metabolic reactions and to define the precise boundaries of indi-
vidual gene action within a biological system of complex regulato-
ry mechanisms7.

With the availability of “complete” genomes, emphasis on indi-
vidual genes and their direct control over metabolic pathway
enzymes must be supplanted by an emphasis on metabolic con-
trol in a complex metabolic network. The behavior of metabolic

networks in mammalian cells, as indicated by the flow of sub-
strates, is the culmination of regulatory processes at many levels,
including the expression of enzymes and regulatory proteins and
the transcription of genes into mRNA based on sequence infor-
mation of genomic components of the DNA. Needless to say,
these elements of the regulation of cell functions are intercon-
nected, complex, and regulated at each level by different mecha-
nisms8. Such complexity is well known in engineering fields,
where sophisticated modeling programs have been developed to
simulate the complex behavior of structures to determine interac-
tions among building components that determine ultimate
strength. Unlike engineers, biologists are handicapped in their
study of complex metabolic behavior in that the structures and
the interactions among building components of the system are
mostly unknown.

In this review, we summarize progress in the use of metabolic
control analysis (MCA) to both characterize system behavior and
identify crucial steps in metabolic pathway regulation. Such infor-
mation is necessary for predicting critical enzymatic target sites
for genetic, chemical, or metabolic intervention (through gene
therapy, small-molecule drugs, or dietary treatments). We provide
examples showing how MCA can be applied to predict the quanti-
tative relationship between aneuploidy and the development of
cancer, to understand certain forms of diabetes and enzyme
myopathies, and to identify key points of intervention in metabol-
ic pathways linked to cancer. MCA provides a focused approach in
the search to identify and characterize influential metabolic reac-
tions in cell behavior, which can be used as targets for effective
therapeutic interventions against these still poorly understood
disease processes.
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Modeling metabolic networks
Predicting the behavior of metabolic networks in mammalian cells pre-
sents several major challenges. First, our knowledge of the individual
components of the network is often inadequate9,10. Second, the net-
works likely involve metabolic steps with nonlinear kinetics that highly
increase complexity9,10. Third, studying networks at the level of the gene
may be difficult, because naturally evolved metabolic networks of
mammalian cells inherently are not optimized at the genetic level.
Modification of genes can alter only enzyme (protein) synthesis; it has
little direct influence on substrate availability or reaction kinetics,
which control the behavior of a well-controlled metabolic network.

During the past few decades, a great deal of effort has been devot-
ed to genetic manipulation of cells and microorganisms with the
goal of improving the production of biological materials for indus-
trial purposes. However, the targets of such genetic manipulations,
which can now be readily done, are still distant from the sites of
metabolic control. Similar difficulties have been encountered in the
gene therapy of metabolic diseases when single-gene intervention
has been used. There are relatively few accounts of successful meta-
bolic flux alterations as a result of gene therapy because of the com-
plex, nonlinear nature of the metabolic control architectures11–13. In
1993, this observation led Stephanopoulos and Sinskey14 to conclude
that a rational approach to metabolic engineering that analyzes reac-
tion network characteristics is very much needed in order for the
efficient genetic manipulation of metabolic networks to progress.

Actually, as Bailey10 pointed out, approaching the cell as a complex
system has long been an established principle in metabolic engineer-
ing and, by facilitating the identification of drug targets in biochem-
ical networks for medical intervention, this should make more effi-
cient the process of validating drug targets and ultimately help
redress stagnation in the rate of pharmaceutical discovery. The most
crucial challenges are to localize the frequently elusive controlling
enzymatic steps that strongly affect metabolic substrate flux and thus
serve as adequate targets of further genetic (gene therapy, antisense),
chemical (drug), or metabolic (lifestyle/food) interventions.

Principles and applications of
MCA
One of the tools frequently used to
analyze metabolic networks is stoi-
chiometric models. These models
apply mass balances around the net-
work of intracellular metabolites to
calculate metabolic fluxes through-
out the network. Inputs for this
analysis are typically the uptake and
secretion rates of sets of metabo-
lites, and often 13C-enriched sources
are used. As pointed out by
Nielsen15, however, flux analysis
using metabolic stoichiometric
models can only study interactions
between different pathways and the
quantification of flux distributions
around branch points, but not eval-
uate how fluxes are controlled.

During the past two decades, two
main theoretical frameworks have
been developed for studying the
genetic, enzymatic, and substrate
level control mechanisms in metabol-
ic networks. These are the biochemi-
cal systems theory (BST), developed
by Savageau (see reviews16,17), and
MCA (see reviews18,19). Although

these two theories share many elements and are to a large extent equiv-
alent, MCA has become the preferred method for the study of metabol-
ic control properties of metabolic steps, probably because non-mathe-
maticians find its language easier to understand.

In MCA, the control exerted by each and every enzyme in a meta-
bolic network over substrate flux or any other systemic parameter
(i.e., metabolite concentration, hormone secretion, or cell prolifera-
tion) can be described quantitatively as a control coefficient. Control
coefficients of enzymatic steps are defined as the fractional change in
the systemic property over the fractional change in enzyme activity.
Control coefficients are frequently determined by measuring these
fractional changes after applying specific enzyme inhibitors. An enzy-
matic step is considered to have the highest control coefficient when
fractional change of enzyme activity and fractional change of the sys-
tem parameter are parallel to each other. This is illustrated in Figure 1,
where the determination of control coefficient of cytochrome c oxi-
dase on mitochondrial oxygen consumption is plotted according to
the method of Rossignol et al.20 In this case, the control coeffiecient is
low and altering the levels of the oxidase would have relatively little
effect on oxygen consumption of the system, mitochondria.

In metabolic networks where the individual enzyme–substrate
kinetics are known, MCA can be used to derive the individual control
coefficients that predict the response of the system to perturbations18

as, for instance, changes in substrate availability or “genetic” pertur-
bation of the network. On the other hand, in poorly defined systems
where enzyme–substrate kinetics are unknown, control coefficients
can be experimentally determined by varying the parameter of inter-
est and measuring the changes in the relevant substrate flux. For
example, when determining the control coefficient of a metabolic
enzyme (enzyme A) on tumor cell proliferation, one would adminis-
ter the specific inhibitor of enzyme A to cultures of tumor cells and
subsequently measure the parallel decrease in enzyme A activity and
cell proliferation. The slope of the log–log plot of tumor cell prolifer-
ation versus enzyme activity gives the control coefficient of enzyme A
on cell proliferation (CA). In the particular case where the activity
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Figure 1. Definition of a control coefficient of an enzymatic step. In this case, the control coefficient
corresponds to the fractional change in oxygen consumption in mitochondria over the fractional change in
activity of the mitochondrial enzyme cytochrome c oxidase. Percentage of oxygen consumption flux (A) and
percentage of cytochrome c oxidase activity (B) as a function of the concentration of KCN (the specific
inhibitor) in rat mitochondria isolated from heart. Adapted from the experiments described by Rossignol et al.20.
Control coefficient is computed as: (initial slope in curve A) /(initial slope in curve B) = –0.83/–6.2 = 0.13.
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REVIEW

decreases by the same relative amount as the cell proliferation, the
value of the control coefficient is unity. We assume that the enzyme
inhibitor we used in this example is a specific inhibitor of enzyme A
and does not affect other enzymes in tumor cells.

Figure 2 shows the double log plots of the dependence of tumor
cell proliferation on the activity of an hypothetical enzyme A having
a low (Fig. 2A) and high (Fig. 2B) control coefficient. An enzyme is
considered to have a high control coefficient when changes in its
activity are reflected totally in changes of tumor cell proliferation. In
such a (hypothetical) case, the control coefficient value for the
enzyme would be unity. An enzyme is considered to have a low con-
trol coefficient when changes in its activity have small or negligible
effect on the tumor cell proliferation. Thus, by means of control
coefficients, MCA provides an easily understandable quantitative
description of how metabolic enzymes or transport proteins control
biological functions in complex mammalian cells.

Control coefficient distribution among various enzymatic steps in
a metabolic pathway gives us the initial assessment of where to inter-
vene within a metabolic network. By either direct enzyme inhibitors
or genetic manipulations of these steps, one hopes to achieve the
desired values of metabolic substrate flux that affect systemic para-
meters such as cell proliferation or cell-cycle progression in studies
of cancer cells. In spite of the fact that the application of MCA in
biotechnology is still a young field, some promising examples have
captured the attention of metabolic engineers, drug developers, and
basic scientists (see refs 18,19 for reviews).

Drug target identification
An important puzzle in drug discovery is how to identify key tar-
gets in disease pathways. Differential expression of genes between
diseased and healthy tissue is commonly taken as an indication of
the specific targets of disease pathways. Such an approach ignores
the obvious fact that the robust metabolic network of feedback
loops and regulatory mechanisms within cells has evolved to
maintain homeostasis and to withstand a variety of genetic and
environmental insults. The interlinking of disease pathways
through such a metabolic network increases the difficulty of iden-
tifying therapeutic targets using information from gene expres-
sion analysis. On the other hand, MCA approaches the problem of
drug targeting by examining the contribution of individual com-
ponents within a metabolic network, providing a theoretical
framework for describing metabolic/signaling/genetic systems of
any complexity.

An attractive feature of MCA is that it does not require all system
components to be characterized a priori18,19. Moreover, control coef-
ficients can be estimated for different components of the network
and for pertinent environmental factors. The control coefficients
give a first approximation of which proteins or pathways may exert
more control on the system properties to be modified. Targeting the
steps with higher control coefficients on relevant system properties,
such as tumor growth or obesity, could be a good strategy to design
effective therapeutic agents.

An extension of MCA is the systems approach to drug discovery,
currently advocated by Entelos (Menlo Park, CA). In this “top-
down” strategy, computer models are constructed for specific dis-
eases (e.g., human obesity, asthma, and AIDS) that integrate the
major physiological systems involved in human metabolism. Such a
systems model permits the simulation of therapeutic interventions.
It is claimed that the approach has provided insights into the reasons
why many anti-obesity agents have not yet yielded the expected
weight loss in clinical trials. Such analysis identified drug targets that
are not the gene products identified as being differentially expressed,
but others lying up- or downstream of these genes within the meta-
bolic network (Michelson, S., personal communication).

In a manner similar to differential expression profiling, the analy-
sis and comparison of control coefficient profile between host and
parasite or between tumor cells and their normal counterpart allows
the identification of differences in metabolic adaptation that can be
exploited to identify selective drug targets against a parasite or a can-
cer with minimal effect on the host.

The framework of MCA in drug design also provides insight into
the possible advantages and disadvantages of irreversible and non-
competitive inhibitors with respect to competitive inhibitors21.
While specific irreversible inhibitors are the best option to perma-
nently inactivate a particular enzyme, small-molecule drugs are
generally competitive inhibitors. Cornish-Bowden and Eisenthal21

have pointed out that competition works both ways. Any molecule
that can compete with the substrate for binding to the active site of
an enzyme is a molecule that the substrate can compete with. In
practice, this means that in many cases a modest increase in the
substrate can overcome the inhibitory effect of the drug. On the
other hand, though noncompetitive inhibitors overcome this prob-
lem, they can cause a catastrophic increase in an intermediate
metabolite of the pathway and the metabolic system can quickly
become unstable. Thus, Cornish-Bowden and Eisenthal21 empha-
sized that one must consider not just the therapeutic value of a
small-molecule drug in terms of its effectiveness in competition
with its natural substrate analogue for binding to the enzyme, but
also the possibility that effective competition by noncompetitive
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Figure 2. A double logarithmic plot of the dependence of tumor cell
proliferation, versus an hypothetical enzyme A activity. The tumor cell
proliferation control coefficient is computed as the slope at the initial point
A0: (A) Enzyme A shows a control coefficient of 0.1 on the tumor cell
proliferation; (B) Enzyme A shows a control coefficient of 1 on the tumor
cell proliferation.
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inhibitor can cause a catastrophic increase in pathway intermedi-
ates and result in a metabolic collapse.

Another promising area of MCA application is the rational design
of combined drug therapy for metabolic disorders. Although the
presence of every enzyme in a sequence is essential to a metabolic
process, the overall stimulatory or inhibitory effect of a drug is likely
achieved with lower concentrations for those enzymes with high
flux-control coefficients than for enzymes with low coefficients18,22.
MCA can be used to identify where particular metabolic enzymes
with high substrate flux-control coefficients reside along the net-
work of enzyme pathways as potential targets for intervention.

Functional genomics
One of the major challenges of functional genomics is to determine
the roles of genes newly discovered by sequencing the genome of an
organism23. The functional significance of a gene can be studied at
the level of the genome, transcriptome, proteome, and
metabolome24,25. However, as many genes do not seem to be required
for survival, energy production, metabolic fluxes, or cell growth23,24,
the task of determining gene function is much more than simple
determination of gene expression.

Recently, Raamsdonk and colleagues23 have shown that
metabolome analysis can be used in combination with MCA to eluci-
date the function of “silent” genes in an approach called functional
analysis of co-responses in yeast (FANCY)23,26. The FANCY approach
requires knowledge of the metabolome (metabolite concentrations
under a specific nutrient condition) of a known mutant and the wild
type. Clustering of these metabolites allows the separation of the
mutant and the wild-type. Similar metabolic study is then carried out
for the silent gene mutant. When a silent gene encoding an unknown
function or product is deleted, the resulting metabolite profile and its
response to change in the study condition (i.e., the co-response coef-
ficient, as defined by Hofmeyr and Cornish-Bowden27,28) will be simi-
lar to that obtained for the deletion of a (known) gene that acts on the
same functional domain of the cell23,29,30.

Using Saccharomyces cerevisiae strains, Raamsdonk et al.23 showed
experimentally that the measurement of co-response coefficient pro-
files can reveal the function of a silent gene, even when deletion of
the gene has no measurable effect on yeast growth rate. On the basis
of these results, Cornish-Bowden and Cárdenas31 predict that 
co-response coefficient profile analysis combined with multivariate
statistical techniques, such as principal-components and discrimi-
nant-function analysis32, will in the near future enable the classifica-
tion of even completely unknown genes into related groups.

Genetic disorders
MCA is also useful for understanding genotype–phenotype correla-
tion in genetic disorders. Clinical manifestations of genetic disorders
are known to be highly variable, as sometimes affected individuals
with low levels of a given enzyme or protein may not show clinical
symptoms, whereas others fall severely ill with just minor changes in
the expression of some other metabolic enzymes. The variability is
often explained as the “threshold effect” in genetic diseases. This
phenomenon can be understood using MCA. The threshold effect
depends primarily on the control coefficient of the affected enzyme
or protein on the system parameter responsible for the disease symp-
toms. The dominant or recessive characteristics of mutant alleles can
thus be examined using MCA.

Mazat and coworkers20, 33 have used MCA to explain an important
feature of mitochondrial disease: the existence of a threshold in the
expression of oxidative phosphorylation complex deficiencies on the
respiratory flux or on ATP synthesis. Large decreases in the complex
activity initially only result in small decrease in flux. It is only after
reaching a certain inhibition level (in most cases higher than 50%)

that respiratory flux abruptly falls toward zero. Mazat’s group
showed that these threshold curves are inescapable consequence of
the fact that most of the individual control coefficients of the differ-
ent oxidative phosphorylation complexes on these fluxes are small.

Agius34 has also demonstrated a strong association between glu-
cokinase activity, an enzyme with a high control coefficient, and
maturity-onset diabetes of the young type 2 (MODY-2) in individu-
als with a single mutant allele of the glucokinase gene. MODY-2 is
caused by mutations in one allele of the glucokinase gene and is
characterized by an autosomal dominant inheritance. Affected indi-
viduals are heterozygotes with one normal and one mutant allele34–36.
Agius et al.37 have reported a control coefficient of glucokinase on
glycogen synthesis close to one, indicating a truly rate-limiting step.
On the basis of MCA applications, the high control coefficient of
glucokinase on hepatic glycogen synthesis is sufficient to induce
abnormality of hepatic glycogen synthesis in individuals with
MODY-2 who have just a single mutant allele35. Kacser and Burns38

have shown that dominance is dependent on allelic differences, as
dominance and recessivity of the mutant allele are related to the con-
trol coefficient values of the enzyme that it encodes. The finding by
Agius et al. supports this explanation: MODY-2 presents with a dom-
inant inheritance that correlates with the high control coefficient of
glucokinase on glycogen synthesis.

Another example of the genetic dominance concept derived from
MCA analyses is enzyme erythropathies associated with deficiencies
of triose phosphate isomerase (TPI)39,40. In this case, the concentra-
tions of dihydroxyacetone phosphate and the glycolytic flux are not
affected, even at low concentrations of TPI41. Individuals heterozy-
gous for the mutated alleles do not show clinical symptoms, and
those who are homozygous suffer only mild clinical symptoms and
rarely death, despite low TPI activities. The recessive inheritance of
this inborn metabolic error corresponds to a deficiency in TPI activ-
ity, an enzyme with a very low control coefficient in the glycolytic
pathway carbon flux. The relatively benign clinical presentations (see
ref. 39 for review) are expected for defects of an enzyme with low
control coefficient in an otherwise vital metabolic process. On the
basis of this theory, genetic changes that determine enzymes with
high control coefficients will show dominant inheritance, whereas
genetic changes affecting metabolic enzymes with low control coeffi-
cients will show recessive inheritance.

Aneuploidy and cancer pathogenesis
Aneuploidy—an abnormal number of chromosomes with either
normal or abnormal morphology—has been detected in practically
all of the >20,000 solid human cancers for which genotypes have
been reported to date42–44. It was proposed over 100 years ago45,46 as
one of the major pathogenic factors in cancer development. The ane-
uploidy hypothesis of cancer is problematic, however, in that it does
not provide a specific explanation of how the diversity of cancer-
specific phenotypes is produced through gene mutations44,47.

The role of aneuploidy in determining the phenotypes of cancer
cells has recently been re-examined by Rasnick and Duesberg48 using
a modified form of MCA. Their results indicate that the control of
phenotypic transformation is determined by the fraction of the
genome undergoing changes that affect chromosome number, not
by the magnitude of differential expression of individual genes. In
this model, the transformation of a robust normal phenotype into
cancer requires the alteration of a massive number of genes, a
process that can only be accomplished by aneuploid changes in the
genome. As a result, cancerous phenotype is associated with cells that
have progressed beyond a certain threshold of aneuploidy, which
amplifies a massive number of genes (e.g., those involved in glucose
intake, cell proliferation, and growth promotion) effectively in rapid
periods. Thus, according to these investigators, the initial step in car-
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REVIEW

cinogenesis is likely to be the process of aneuploidy. Mechanisms
resulting in the increase of aneuploidy in the promotion phase of
malignant transformation include either genetic instability of aneu-
ploid cells or tetraploidization followed by a gradual suppression
and/or loss of genetic information exerting growth control48.

The work of Rasnick and Duesberg48 based on MCA analysis, sug-
gests the hypothesis that certain cancer phenotypes are associated
with aneuploidy exceeding a certain threshold, which determines the
normal and proliferative metabolic activities. Further studies are
required to validate the aneuploidy hypothesis against the mutation
hypothesis in determining the major pathogenic factors in cancer
cell development. How the expression of many metabolic enzymes
through aneuploid changes in the genome results in the develop-
ment of tumor specific metabolic profile remains to be investigated.
As stated below, however, it is likely that aneuploidy significantly
increases the expression of certain metabolic enzymes that direct the
selective use of glucose toward nucleic acid synthesis and cell prolif-
eration. Such increases in metabolic enzyme activities in the prolifer-
ative state are a common final pathway for tumor growth–promot-
ing factors, such as cell-surface hormones, cytokines, transforming
growth factors, environmental pollutants, and aging-related specific
signal-transducer pathways.

Targets for cancer therapies
Tumor cells are characterized by a high rate of glucose turnover and
rapid proliferation, which must be a consequence of changes in the
expression of numerous metabolic enzymes involved in glucose oxida-
tion or anabolic glucose use49–52. Indeed, the dependence of tumors on
glucose turnover is routinely exploited in the diagnosis and classifica-
tion of human malignancies. Positron-emission tomography studies
using the radioactive analog glucose tracer [18F]fluorodeoxyglucose
have shown that the increased rate of glucose accumulation in various
cancer cells strongly correlates with increased malignancy and inva-
siveness53–56. Besides its diagnostic significance, the dependence of
human tumors upon glucose for the de novo synthesis of ribose,
purines, and pyrimidines can also be exploited for therapeutic inter-
vention. Glucose metabolic enzymes with high control coefficients in
nucleic acid synthesis and proliferation are potential targets for new
drug development. MCA studies can be used to identify these target
enzymes with high control coefficients, and specific tumor
growth–modulating agents that impact on these metabolic pathways.

Unlike normal cells, which metabolize glucose for energy, tumor
cells use glucose primarily for specific intracellular anabolic process-
es, mainly the synthesis of nucleotides. Other anabolic reactions,
such as lipid- and protein-synthesis pathways, are depleted of glu-
cose carbons57. As stated above, such metabolic differences between
normal and tumor cells may be the result of significant aneuploidy
in undifferentiated cells. The increased expression of anabolic meta-
bolic enzymes probably requires aneuploidy above the threshold for
supplying optimal substrate levels in rapidly and continuously divid-
ing malignant cells.

Cell-transforming agents, such as transforming growth factor-β
(TGF-β) and organophosphate pesticides, induce a severe imbalance
in glucose carbon redistribution between structural and regulatory
macromolecules associated with cell proliferation and those associ-
ated with cell differentiation58. Cell transformation induced by TGF-
β is accompanied by increased glucose carbon deposition into nucle-
ic acid and amino acids through non-oxidative metabolic reac-
tions58. Such evidence suggests that cell transformation and tumor
growth are associated with two processes: first, the activation of
metabolic enzymes that divert glucose carbon use from metabolism
to nucleic acid synthesis; and second, the phosphorylation, allosteric
regulation, and transcriptional regulation of intermediary metabolic
enzymes and their substrates.

The most effective existing cancer treatments (e.g., chemotherapy
drugs or radiation) interrupt these processes by directly inhibiting
DNA and RNA synthesis. The main disadvantage of these therapies is
the narrow therapeutic margin of limited selectivity and high toxicity.
Using insights from MCA of tumor-cell metabolic abnormalities, it
should be possible to alter the malignant phenotype by altering the
metabolic functional capabilities of cancer cells. This principle could
be applied to the development either of new drugs or of prevention
strategies. It could identify regulatory enzymes in metabolic processes
that mediate the anabolic use of glucose in cancer cells, even without
knowledge of the signal transducer pathways. When chemical
inhibitors are used to reverse the anabolic glucose-metabolic process
that allows unregulated cell growth, the malignant phenotype of the
cells may also be reversed, as predicted by MCA.

One specific metabolic target for such an approach is the non-
oxidative part of the pentose cycle. Transketolase, which catalyzes
non-oxidative ribose synthesis in tumor cells, has been identified as
the key enzyme in the regulation of glucose carbon recruitment for
the de novo synthesis of nucleic acid ribose59. Transketolase has an
exceptionally high growth control coefficient in in vivo tumor prolif-
eration60, as determined by MCA. Accordingly, the chemically modi-
fied transketolase cofactor oxythiamine has been shown to be an
effective treatment in experimental cancer in animals59. Specifically,
oxythiamine induces a dose-dependent arrest in the progression of
the cell cycle in Ehrlich’s tumors in mice61. Moreover, from the high
tumor growth control coefficient of transketolase, it is possible to
predict that in advanced tumors, which are commonly thiamine
deficient, supplementation of thiamine could significantly increase
tumor growth through transketolase activation57,60. This has been
validated in vivo using mice with ascites tumors60.

Other examples of natural and synthetic tumor-growth inhibitors
are genistein and the wheat germ extract Avemar, both of which
strongly inhibit the use of glucose for nucleic acid synthesis as a cen-
tral mechanism of their anti-proliferative action62,63. As non-oxidative
ribose synthesis is almost unique to most types of tumors, enzyme
inhibitors with high control coefficients in both glucose use and non-
oxidative anabolic glucose use for de novo nucleic acid synthesis are
likely to be of great value in future cancer treatment protocols.

Targets for protozoal disease therapy
MCA has also been used to identify the enzymatic steps that control
glycolysis in Trypanosoma brucei, a protozoal parasite responsible for
African sleeping sickness in humans and for the related disease,
nagana, in livestock, which has important economic conse-
quences21,64–67. As T. brucei infecting the bloodstream rely entirely on
rapid glycolysis for energy production—and because there are sig-
nificant differences in the glycolytic reactions of the parasite and the
host—the glycolytic pathway has been investigated as a source of tar-
gets for antiprotozoal agents21,64–67.

Early work focused on selecting from the protozoan’s glycolytic
pathway a target enzyme that exerts stringent control on glycolysis in
the parasite, while only moderately affecting glycolysis in the
host64,66,68. In the course of these studies, two features of T. brucei
glycolysis became apparent. First, the parasite lacks a functional cit-
ric acid cycle and thus many of the glycolytic reactions occur in a
special organelle, the glycosome. Second, glucose transport in 
T. brucei depends primarily on glucose concentration in the host’s
plasma, which controls glucose flux only at low extracellular glucose
concentrations66.

At high glucose concentrations, the control of glycolytic flux is
taken over by aldolase (ALD), glyceraldehyde-3-phosphate dehydro-
genase (GAPDH), phosphoglycerate kinase (PGK), and glycerol-3-
phosphate dehydrogenase (GDH). Therefore, when normal glucose
control is present in the host, the parasite’s glucose transporter would
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seem to be the most promising target for anti-trypanosomal drug
development, followed by ALD, GDH, GAPDH, and PGK. However,
individuals with a 95% deficiency in ALD, GAPDH, or PGK show
negligible clinical symptoms of hemolysis or erythrocyte dysfunc-
tions41, and MCA reveals that this is because ALD, GAPDH, and PGK
have low control coefficients. Therefore, drugs directed against ALD,
GAPDH, or PGK would also have high selectivity against try-
panosome glycolysis and survival, with minimal host toxicity.

An alternative approach has been suggested by Eisenthal and
Cornish-Bowden21,65,69, who focused on increasing glycolytic
metabolite concentrations in parasite cells to toxic levels. As these
authors point out65, this strategy is the most effective when apply-
ing a non-competitive inhibitor of an enzyme with a small flux-
control coefficient. Three potential candidate steps in parasite gly-
colysis were first identified that could be blocked with an noncom-
petitive inhibitor: glycerol transport and its components (phos-
phoglycerate mutase and enolase); phosphoenolpyruvate trans-
port; and pyruvate transport.

Glycerol transport was subsequently ruled out as a potential target
because it carries very low flux under aerobic conditions in this par-
asite. The fact that the parasite’s mammalian host oxidizes pyruvate,
rather than excretes it, distinguishes pyruvate transport as the prime
candidate for targeting with a non-competitive inhibitor, with the
intent of inducing a toxic level of pyruvate in T. brucei. The task now
is to characterize specific inhibitors of the pyruvate transporter in 
T. brucei identified by MCA as a promising target.

Conclusions
It is clear that large-scale approaches such as genomics, proteomics,
and metabolomics have been very successful in establishing the com-
ponents comprising metabolic and signaling networks. However, the
identification of key target enzymes that translate the effect of indi-
vidual single steps into perceptible effects on the entire network

remains a central problem in biological research. The methods of
determining substrate flux and the analysis of such measurement
using MCA provide an understanding of the contribution of the
individual components to the biological behavior of the whole sys-
tem. Such knowledge can be exploited to provide a rational approach
to select the best candidate targets for drug design, as illustrated by
the examples in this review.

It is increasingly accepted that knowledge of a given gene sequence
cannot be easily translated into a defined phenotype in a particular
environment. As reviewed by Kacser and Small70, certain pathway
patterns allow a metabolic system to exist in two alternative stable
steady states, depending on the environment. Such dual stability
implies that environmental perturbation can switch the system from
one state to the other. Thus, a single genotype may show two alterna-
tive phenotypes without any change in gene expression. Moreover,
the instability resulting from gene–environment interactions is a sys-
temic property that cannot be assigned to any single element.

MCA is thus an important tool in the study of genotype–pheno-
type correlation. It allows genes to be ranked according to their
importance in controlling and regulating cellular metabolic net-
works. We can expect that MCA will have an increasing impact on
the choice of targets for selective modification by genetic, chemical,
or other means.
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