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ABSTRACT
COVID-19, a pandemic disease caused by a viral infection, is associated with a high mortality rate. Most of
the signs and symptoms, e.g. cytokine storm, electrolytes imbalances, thromboembolism, etc., are related
to mitochondrial dysfunction. Therefore, targeting mitochondrion will represent a more rational treatment
of COVID-19. The current work outlines how COVID-19’s signs and symptoms are related to the mitochon-
drion. Proper understanding of the underlying causes might enhance the opportunity to treat COVID-19.
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Introduction

COVID-19 is a new emerging pulmonary infection caused by
SARS-COV-2. It is characterised by flu-like symptoms often fol-
lowed by acute pulmonary inflammation. Multiple viruses are
known to cause both inflammation and mitochondrial dysregula-
tion (metabolic shifts). The influenza virus H1N1 targets the mito-
chondria of type II cells1. Multiple other inflammatory viruses are
known to induce metabolic changes, such as the cytomegalovirus
(CMV)2, the Epstein-Barr virus (EBV)3, or the hepatitis virus (HCV)4.
These viruses interfere with cellular metabolism, increase glucose
uptake, and decrease the mitochondrial energy yield resulting in
intense glycolysis. In Caco-2 cells, infection with SARS-CoV-2 has
been found to up-regulate carbon metabolism and decrease oxi-
dative phosphorylation. I removed it because it is out of context
and there is no reference- also no reference for the Caco-2 cells.

The mitochondrion is a doubled-membrane organelle, repre-
sents the backbone of the eukaryote cell metabolism5,6.
Mitochondrion is the cells’ metabolic generator and plays a signifi-
cant role in determining cellular proliferation7, cellular death path-
ways8 and also plays a crucial role in maintaining the redox state
of the cell9.

Many viral diseases disturb the mitochondrial physiology10–12,
e.g. Epstein–Barr virus (EBV) affects mitochondrial fission13, herpes
simplex virus type 1 (HSV-1) and pseudorabies virus (PRV) affect
calcium homeostasis14, and many viruses, e.g. influenza viruses,

Hepatitis B virus, support and/or encode proapoptotic proteins
that lead to programmed cell death15–17.

Since the occurrence of unidentified pneumonia patients in
Wuhan hospitals in China in late 2019 and the labelling of the dis-
ease by the World Health Organisation (WHO) as severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), the disease
became a pandemic in less than three months, and as of the
beginning of December 2020 the total confirmed cases of COVID-
19 reached 65,257,767 worldwide according to a
WHO update18–20.

Despite the increased global incidence records of the COVID-
19 cases, most of the infected patients showed either mild infec-
tion with no fever or signs of pneumonia or moderate infection
with clinical manifestations like cough, sore throat, fever �38 �C,
fatigue, and shortness of breath21.

Severe infection with increased mortality rate occurs with
pneumonia and respiratory failure. At the same time, other com-
plications might present, such as acute respiratory distress syn-
drome (ARDS), microvascular thrombosis, coagulopathy, liver
injury, acute kidney injury, acute cardiac failure and shock22–27.
Factors affecting the infection’s severity are not fully understood;
however, factors such as the state of the immune system, viral
load, and underlying comorbid diseases might play a role in the
severity of the infection28–30.
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In the current work, we present COVID-19 as a mitochondriop-
athy and demonstrate that many of the hallmarks of COVID-19 are
driven by mitochondrial injury.

The role of mitochondria and cytokine storm

Hyperinflammation – e.g. cytokine storm – is a hallmark of COVID-
1931. Such hyper-inflammation occurs due to a massive increase in
Reactive Oxygen Species (ROS)32,33. Increased ROS results in the
release of tumour necrosis factor (TNF)-a and interleukin-1b (IL-
1b)34,35. The mitochondrion is a significant source of ROS in mam-
malian cells36. Therefore, the mitochondrion lies within the cyto-
kine storm’s core37.

The inflammasome is a cytosolic complex composed of mul-
tiple proteins of innate immunity to promote and activate the
proinflammatory mediators such as IL-1b, IL-1838–41. One protein
component is an intracellular pathogen sensor called nucleotide-
binding oligomerization domain-like receptors, or NOD-like recep-
tors (NLRs)42. NLRP3 is one NOD-like receptor (NLRs) family mem-
ber that represents the backbone of the inflammasome. The role
of NLRP3 in inflammation and the cytokine storm is crucial and
complex. As a consequence of its activation, the cell reprograms
its metabolic machinery into increased glycolysis with a subse-
quent reduction of the Krebs’ cycle43, i.e. induces mitochondrial
atrophy. ROS also activates the NLRP3 where it is associated with
mitochondrial cardiolipin40 and might be correlated with mito-
chondrial ageing (which stimulates the inflammasome)44.

SARS-COV-2 infection attacks the mitochondrion, especially the
phosphorylation (OxPHOS) pathway, e.g. Complex-I45, which
results in abnormal ROS production supporting cellular diseases
and ageing. SARS-CoV-2 might directly activate the NLRP3 inflam-
masome, with consequent flaring-up of the inflammation cas-
cade40. Hence, SARS-COV-2 alters mitochondrial physiology46,47.

COVID-19 disrupts the possible mitochondrial role in
iron homeostasis

Iron is an essential nutrient and its levels differ from one tissue to
another and also depend on the tissues pathological state48.
Cellular iron homeostasis is a complexed process49, but generally,
it could be described as: the entrance of iron to the cell through:
(i) endocytosis of transferrin receptor 1 (TfR1), or (ii) ferrous iron
(Feþ2) transporters e.g. divalent metal transporter 1 (DMT1)50 and
Zinc transporters 8, 14 (ZIP8, ZIP14)51,52 with the assistance of the
iron reductase enzyme Metalloreductase STEAP253, Duodenal cyto-
chrome B (Dcytb)52, and Stromal cell-derived receptor 2 (SDR-2)54.
After being taken-up, the iron is stored in ferritin55–57 for different
biochemical functions including the formation of ROS58,59 and
managing transcription through regulating the iron-responsive
element-binding proteins (IRP1, IRP2)60,61. After that, iron export
from the cell occurs via ferroportin-1 (also termed as solute carrier
family 40 member 1 (SLC40A1) or iron-regulated transporter
1 (IREG1))62.

The role of mitochondria in iron homeostasis is one of the
most challenging of recently addressed issues. Generally, ferritin is
an intracellular protein that can act as an iron-buffering agent to
re-equilibrate iron deficiency or iron overload63. Ferritin is stored
in the mitochondrion and imported from the cytoplasm via mito-
ferrin carriers64,65.

Disruption of mitoferrin leads to hyperferritinemia, accompa-
nied by hyper-inflammation, an additional hallmark of COVID-19
severity64,66,67. Severe iron overload leads to mitochondrial DNA
damage that exacerbates the cellular oxidative stress68.

For this reason, the iron-chelating agent, Deferoxamine, has
been introduced in the management of COVID-1969,70.

Lactate dehydrogenase in COVID-19

The lactate dehydrogenase (LDH) is an enzyme that catalyses a
reversible biochemical reaction that converts pyruvate into lactate.
After glucose entry, the hydrogen ions (proton, Hþ) level is rising,
alters the cell’s optimum pH to process its chemical pathways.
After completing the Krebs’ cycle, the cell yields in CO2, energy in
ATP, and hydrogen ions. The oxygen reacts with Hþ to produce
water. Therefore, oxygen in cellular respiration acts as a detoxify-
ing agent (acting as a buffer)71. During transient hypoxia, some
tissues, e.g. heart, brain, kidney, are prone to damage.

In contrast, other tissues are slightly adaptable by expressing
the lactate dehydrogenase enzyme to shift the cellular metabolism
to prevent the Krebs’ cycle. Therefore, the glucose utilisation after
its entry ends up by forming lactic acid and furthering extracellu-
lar acidity via Monocarboxylate Transporters (MCTs)72–74. So, meta-
bolic shifting to end in lactic acid will decrease the possible
intracellular acidity and promote the extracellular acidity that
exacerbates the cytokine storm as lactate is a signalling molecule
that supports inflammation75,76.

The conversion of pyruvate to lactate is associated with the
conversion of NADH to NADþ. Increasing of NADþ level inhibits
not only mitochondrial metabolism but also supports the inflam-
mation process77,78.

LDH is correlated with COVID-19 and its severity79 because the
lactate synthesis is increased. The level of blood lactate is a prog-
nostic factor for the intensity of the lung’s inflammation and
decreased survival80.

Dysregulation of calcium homeostasis during COVID-19 affects
mitochondrial biology

Calcium is a vital electrolyte that plays many critical roles in cellu-
lar physiology81. Calcium governs intracellular mitochondrial motil-
ity (mitochondrial dynamics)82,83, manages mitophagy84–86,
controls ATP production87, and impacts the role of the mitochon-
drion in the redox statue of the cell88.

A reduced level of calcium is well-documented in covid-19
infection, and it is thought to have a role in its poor prognosis89.
Therefore, hypocalcaemia has a detrimental effect on the mito-
chondrion, promotes ROS formation, and activates the inflamma-
tory cascade.

The role of the mitochondrion on coagulability

D-dimer

While the term D-dimer reflects the dimerisation process (two sub-
units), it also seems to be an erroneous name suggested by one
of the researchers that discovered it90,91. All in all, D-dimer is fibrin
fragments that are crosslinked with polypeptide bonds due to the
degradation of fibrinogen via plasmin92,93. Higher levels of D-
dimer in the blood represent a severe sign of thromboembol-
ism94–96 and recently has become an indicator of how COVID-19
patients develop thromboembolism and the disease severity97–99

since D-dimer level is markedly increased among critical patients
and is a significant risk factor for mortality100

Oxidative stress is associated with thromboembolism101, in that
ROS activates urokinase plasminogen activator (UPA)102, subse-
quently producing plasmin that hydrolyses fibrinogen into D-
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dimer. The increased Plasmin, in turn, increases ROS103, which pro-
duces an out-of-control positive feedback between ROS and plas-
min. Furthermore, D-dimer expression also might increase the
level of urokinase-type plasminogen activator (plasmin activator),
and so it also enters a vicious cycle producing thromboembolism.

There is an inverse relationship between functional mitochon-
drial and urokinase plasminogen, such that upregulation of the
UPA is an indicator of reduced mitochondrial function while, in
contrast, downregulation of UPA restores mitochondrial function
(e.g. activation of programmed cell death)103.

Troponins

These are a group of proteins found in the heart and skeletal
muscle that mediate calcium-dependent muscle contraction104,105.
An increased level of troponins in the blood is an indicator of
necrosis rather than programmed cell death, i.e. mitochondrial
injury or dysfunctionality due to hypoxia106–112.

COVID-19 is associated with higher troponin levels113, which
might correlate with mortality114. Indeed, higher troponin levels
were confined to cardiac disorder and other diseases, such as sep-
sis or renal disease115, both of which were correlated with COVID-
19112,116,117. Also, during cardiac and muscle injury, troponin levels

are increased significantly in severe disease patients, leading to
progression towards multiple organ failure (MOF) and death.

Targeting the mitochondrion to treat COVID-19

In 1956, Otto Warburg suggested that cancer occurs due to mito-
chondrial injury and, in this respect, it seems that COVID-19 could
be looked at as an extrapolation of cancer118. At least it could be
analysed through Warburg’s lens and could stimulate the debate
of whether mitochondriopathy is a direct cause of COVID-19 via
SARS-COV-2 infection or just a symptom of COVID-19 in which, at
least, mitochondrial injury might represent an early step of the
SARS-COV-2 disease cascade. In this regard, the administration of
pharmacological and non-pharmacological modulators of mito-
chondrial function119 could enhance patient recovery and improve
patients’ quality of life and might boost the vaccine’s efficacy in
the aged population (mitochondrial is a hub of ageing). An
example of those agents includes:

1. NHE1 inhibitors:
� In 2000, Reshkin et al. observed that the over-expression

of NHE1 is the first event of carcinogenesis followed by
alkaline increases in intracellular pH (alkaline pHi)

120,121;

Figure 2. Different chemical formula of some of NHE1 inhibitors.

Figure 1. How does Amiloride re-equilibrate the cytokine storm via boosting the anti-inflammatory cytokines and suppressing the proinflammatory cytokines.
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and alkaline pHi results in mitochondrial atrophy.
Therefore, NHE1 inhibition, and specifically mitochondrial
NHE1, will boost the mitochondrial functionality122 and so
decrease the effect of SARS-COV-2.

� Amiloride is a potassium-sparing diuretic, and it is a well-
known NHE-1 inhibitor. Amiloride perturbs SARS-COV-2
biology123, and early reports showed that Amiloride inhib-
ited coronavirus replication123

� Amiloride also has potential as an anti-cytokine storm
agent124. One of the possible mechanisms of action that
explains how Amiloride antagonises the cytokine storm
via contrasting the effect of proinflammatory mediators
(e.g. the NF-jB transcription factor), by boosting the
expression of anti-inflammatory mediators such as
Interleukin-10 (IL-10), and nuclear factor of kappa light
polypeptide gene enhancer in B-cells inhibitor, alpha
(IjBa)124 (see Figure 1).

� Significantly, Amiloride also suppresses the urokinase plas-
minogen activator (UPA), which might have a promising
role in preventing thromboembolism125,126 and also pre-
vents heart ischaemia127other NHE1 inhibitors include
Cariporide, Eniporide, etc. (see Figure 2).

2. Fermented wheat germ extract:
a. Fermented wheat germ extract (FWGE) is a dietary sup-

plement used to treat cancer and to slow ageing. The
mode of action of FWGE is a mitochondrial restoration
agent as it modulates the activity of the pyruvate
dehydrogenase (PDH) complex to support the produc-
tion of ATP from mitochondria128. Also, FWGE inhibits
LDH and reduces the NADþ levels128. Moreover, it shows
promising action as an anti-cytokine storm drug129–131.

3. a-lipoic acid:
a. The history of a-lipoic dates to the 1950s (Figure 3)

when German industry developed this drug. The first use
of a-lipoic acid was for peripheral neuropathy due to
diabetes132.

b. A preliminary Chinese study suggests the efficacy of
a-Lipoic acid in the treatment of COVID-19133, where
a-lipoic acid might act in the same way as FWGE; com-
bined with hydroxycitrate, it synergizes the effect as an
acting buffer to correct pHi to restore mitochondrial
function134,135.

4. Methylene Blue
a. Methylene Blue is the oldest of synthetic drugs (Figure

4), even before aspirin. Heinrich Carro manufactured it in
1876 for the German firm BASF. Methylene blue is a sim-
ple molecule. The fusion of two benzene rings with one
nitrogen and one sulphur atom leads to a tricyclic aro-
matic compound which has a complex pharmacology
and multiple clinical indications. Its mechanism of action
involves a stabilising effect on mitochondria. Also,
Methylene blue inhibits the replication of SARS-CoV-2136

and we reported a cohort of patients treated for cancer
by Methylene Blue in cases without SARS-CoV-2137.

5. 2-deoxy-d-glucose (2DG)
a. The German scientist Otto Warburg discovered the

Warburg effect in the 1920s138. Warburg stated that can-
cer cells display increased glycolysis and lactic acid
secretion and, opposite to normal cells, the presence of
oxygen does not inhibit this fermentation. The advent of
Positron Emission Tomography (PET) scan combined
with radio-labelled fluorodeoxyglucose has revived inter-
est in the Warburg effect as there is an increased uptake

of labelled glucose in the primary tumour and its distant
metastases. The Warburg effect explains some of the
cancer’s hallmarks118,135 shift to aerobic glycolysis that
has been reported to stimulate cell growth, evade
tumour suppression, and resist cell death139. Increased
pressure resulting from unrelenting proliferation in the
affected organ’s limited space results in cells’ extrusion
in the vasculature and distant metastases. The release of
lactic acid in the extracellular space is a consequence of
the Warburg effect. Lactic acid promotes angiogenesis
and immune cell modulation140.

b. Infection with SARS-CoV-2 in Caco-2 cells has been
found to up-regulate glycolytic carbon metabolism and
decrease oxidative phosphorylation. In line with this,
treatment with the glycolysis inhibitor 2-deoxy-d-glucose
(2DG) prevents replication of SARS-CoV-2 in these
cells141 (Figure 5).

c. The Warburg hypothesis was based on mitochondrial
injury, but the debate is whether it is a cause of malig-
nant transformation or just a consequence. Irrespective
of which is correct, mitochondrial damage supports evo-

Figure 4. Chemical structure of methylene blue: [7-(dimethylamino) phenothia-
zin-3-ylidene]-dimethylazanium;chloride.

Figure 3. Chemical Structure of lipoic acid: 5-[(3R)-dithiolan-3-yl] pentanoic acid.

Figure 5. Chemical Structure of 2DG: (3 R,4S,5R)-3,4,5,6-tetrahydroxyhexanal.
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lutionary tumour trajectory142. Parallel to this context,
COVID-19 is associated with mitochondrial injury and
such injury supports SARS-COV-2 pathogenicity and con-
fers its evolutionary advantage. However, a significant
concern is whether COVID-19 patients will develop can-
cer in the future due to such mitochondrial injury?

Recommendations and concluding remarks

COVID-19 has become a pandemic disease. The biology of the dis-
ease is exceptionally intricate, including many overlapping path-
ways. However, while the mitochondrion lies at the core of these
pathways, its importance demands immediate attention and fur-
ther investigation. A proper understanding of mitochondrial biol-
ogy in COVID-19 pathogenesis will significantly enhance the
strategy of fighting SARS-COV-2 (Figure 6). This paper has dis-
cussed and suggests a couple of pharmacological modulators that
might represent potentially promising anti-COVID-19 treatments
to block its progression and alleviate its aggressiveness.
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