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Abstract: Fermented wheatgrass juice was prepared using a two-stage fermentation process by
employing Saccharomyces cerevisiae and recombinant Pediococcus acidilactici BD16 (alaD+). During
fermentation, a reddish-brown hue appeared in wheatgrass juice due to production of different types
of red pigments. The fermented wheatgrass juice has considerably higher content of anthocyanins,
total phenols and beta-carotenes as compared to unfermented wheatgrass juice. It has low ethanol
content, which might be ascribed to the presence of certain phytolignans in wheatgrass juice. Several
yeast-mediated phenolic transformations (such as bioconversion of coumaric acid, hydroxybenzoic
acid, hydroxycinnamic acid and quinic acid into respective derivatives; glycosylation and preny-
lation of flavonoids; glycosylation of lignans; sulphonation of phenols; synthesis of carotenoids,
diarylnonanoids, flavanones, stilbenes, steroids, quinolones, di- and tri-terpenoids and tannin) were
identified in fermented wheatgrass juice using an untargeted liquid chromatography (LC)-mass
spectrometry (MS)-matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF)/time-
of-flight (TOF) technique. The recombinant P. acidilactici BD16 (alaD+) also supported flavonoid
and lignin glycosylation; benzoic acid, hydroxycoumaric acid and quinic acid derivatization; and
synthesis of anthraquinones, sterols and triterpenes with therapeutic benefits. The information
presented in this manuscript may be utilized to elucidate the importance of Saccharomyces cerevisiae
and P. acidilactici BD16 (alaD+) mediated phenolic biotransformations in developing functional food
supplements such as fermented wheatgrass juice.

Keywords: nutritional beverages; wheatgrass juice; lactic acid bacteria; metabolomic analysis;
therapeutic phenols in fermented drinks

1. Introduction

The young grass of common wheat plant Triticum aestivum is generally referred to as
wheatgrass. Wheatgrass belongs to the family Gramineae, class Liliopsida, order Cyperales,
genus Triticum and species Triticum aestivum [1]. Wheatgrass juice is extracted from small
wheat sprouts obtained after 6-10 days of germination. Wheatgrass juice is generally
considered a powerhouse of amino acids (alanine, arginine, aspartic acid, glutamic acid
and serine) and chlorophylls [2]. Wheatgrass juice contains handsome proportions of
health promoting compounds such as dietary fibres; vitamins A, B, C and E; minerals
such as calcium, phosphorus, magnesium; alkaline earth metals such as potassium, zinc,
boron and molybdenum; and enzymes including amylase, cytochrome oxidase, lipase,
protease, super-oxide dismutase and trans-hydrogenase [1,3]. Therefore, the consumption
of wheatgrass juice is considered an energy booster [2].
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Wheatgrass juice, popularly known as “green blood” is used in “green blood therapy”.
Patients with chronic allergies, atherosclerosis, asthma, bronchitis, constipation, diabetes,
eczema, hypertension, insomnia, joint pain and tuberculosis are advised to try wheatgrass
therapy [2]. In a clinical trial, 15 female patients suffering from severe rheumatoid arthritis
were administered with standard disease-modifying anti-rheumatic drug (DMARD) and
steroid therapies, while receiving 2× single dosage of Avemar® per day as additional ther-
apy. Avemar® is a medical food manufactured by Hungarians that contains standardized
fermented wheatgerm extract with approved oncological indications. Administration of
Avemar®, a fermented wheat germ extract, decreased their Ritchie index, as well as joint
pain and swelling. Patients showed significant improvement from morning stiffness and
their steroid dependency also reduced to half [4]. In another clinical study, wheatgrass
tablets were given to 40 children (aged between 2 to >8 years) suffering from Thalassemia
major on an empty stomach for a period of at least one year in divided doses of two to
eight tablets per day (500 mg per tablet). This treatment was reported to provide health
benefits by improving their Hb levels, increasing intervals required between two consecu-
tive blood transfusions and decreasing the amount of blood required for transfusion [5]. A
clinical investigation was also performed on 59 female patients suffering from atherogenic
lipoproteins, blood sugar, inflammation and menopausal symptoms. The administration
of freeze-dried wheatgrass powder (at a dose of 3.5 g daily for 10 weeks) was reported to
decrease Apo B fraction, TC and TAG levels significantly in the intervention group (n = 29)
as compared to control group (n = 30) [6].

The antioxidant components of wheatgrass juice display vivid biological activities
such as prevention of oxidative damage to DNA and lipids, inhibition of carcinogen
formation, stimulation of gap junction communication, inhibition of cancer cell proliferation,
promotion of cellular differentiation and apoptosis and activation of innate and adaptive
immune functions [7,8]. Drinking wheatgrass juice is recommended to cancer patients
during chemotherapy because it can help to develop a healthier blood level and to reduce
the requirement of blood-building drugs [2]. The intake of chlorophyll rich wheatgrass
juice was found to be very effective in the treatment of skin infections and colon and
skin ulcers [2,9,10]. Wheatgrass juice, due to its anti-microbial properties, is an excellent
candidate for inclusion in mouthwashes for preventing pyorrhoea and sore throats [3].

Probiotic lactic acid bacteria (LAB) have a well evidenced history of utilization in
various food, feed and pharmaceutical ingredients [11]. Moreover, interesting exogenous
genetic attributes can be added by employing advanced genetic engineering approaches,
such as metabolic engineering or enzyme engineering, to further widen their prospects
for food utilization [12,13]. Keeping this in mind, a natural chilly pickle isolate, namely
Pediococcus acidilactici BD16 (MTCC 10973), was chosen for the expression of synthetic
alaD gene cassette encoding alanine dehydrogenase enzyme (AlaDH) using pLES003
shuttle vector [14,15]. AlaDH is capable of catalysing reductive amination of pyruvate
into L-alanine, which is an important food additive with distinct biomedical activities,
such as anti-bacterial, anti-cancer and anti-urolithiatic [16]. The developed strain was
used to perform secondary fermentation of ginger, kiwi, plum and rose wines. Using
GC-MS-based metabolic profiling, notable metabolic biotransformations leading to the
enhanced production of 4-amino-1-pentanol, 2-aminononadecane, actinobolin, L-alanine,
octanoic acid, 8-azononane, heptadecanenitrile, 3-butynol, adamentanemethylamine, ben-
zeneethanamine, etc., which were found to be responsible for improving attributes of
fermented beverages, were displayed [17]. This proof of concept was carried forward for
developing fermented wheatgrass juice with an objective to demarcate the importance
of P. acidilactici BD16 (alaD+) assisted metabolic transformations during fermentation of
wheatgrass juice and enhancement of its qualitative attributes.
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2. Materials and Methods
2.1. Procurement of Wheatgrass and Extraction of Wheatgrass Juice

Wheatgrass was procured from a local vendor, near Rajpura, Punjab, India. The
fresh wheatgrass was rinsed with distilled water to remove any extraneous matter and
then treated with 600 ppm potassium metabisulfite (KMS) for 15 min. Approximately,
1 litre of wheatgrass juice was extracted by grinding 2 kg wheatgrass using a mechani-
cal mixer grinder (Philips kitchen appliance) and clarified by passing through muslin
cloth. No water or chemical preservative was used for the extraction and preserva-
tion of wheatgrass juice. In a 2 L Erlenmeyer flask, 1000 mL wheatgrass juice and
sugar solution were added, and total sugar content was adjusted to 23 ◦Brix using a
handheld refractometer. The pH was adjusted to 4.5 by addition of fresh lemon juice.
The total volume was increased to 2 L by addition of Bisleri mineral water. After
proper mixing by manual stirring, the contents of the Erlenmeyer flask were distributed
equally (666 mL per flask) into three fermentation vessels of 1 L capacity each to perform
primary fermentation.

2.2. Primary Fermentation Using S. cerevisiae

Dry baker’s yeast (S. cerevisiae) was procured from a grocery store at Punjabi Uni-
versity Patiala, Punjab, India. Baker’s yeast (500 ppm) was added to the vessels after
activating in lukewarm water (35 ◦C). Flasks were covered with water plugs and man-
ual shaking was performed intermittently for 3 days. Afterwards, the flasks were
left undisturbed for 25–30 days at ambient temperature (25 ◦C). The completion of
primary alcoholic fermentation was indicated by settling of the wheatgrass partials
and yeast precipitates. After the completion of primary fermentation (27 days), fer-
mented wheatgrass juice was clarified by filtration through muslin cloth. The filtered
juice was transferred to clean vessels and left undisturbed for 10 to 15 days to al-
low further clarification, then the clarified fermented juice was transferred to another
clean vessel. This process, known as racking, was performed 2–3 times to obtain clear
fermented juice.

2.3. Secondary Fermentation Using Pedicococcus acidilactici BD16 (alaD+)

P. acidilactici BD16 (alaD+) was procured from Systems Biology Lab, Department
of Biotechnology and Food Technology, Punjabi University Patiala, Punjab, India. It
was revived and sub-cultured thrice in 500 mL Erlenmeyer flasks containing 300 mL
sterile MRS media (prepared by mixing 20 g/L dextrose, 10 g/L beef extract, 10 g/L
peptone, 5 g/L sodium acetate, 5 g/L yeast extract, 2 g/L tri-ammonium citrate, 2 g/L
di-potassium hydrogen phosphate, 0.1 g/L magnesium sulfate, 0.05 g/L manganous sul-
fate, 20 µg/mL erythromycin and 1 mL/L tween 80, pH 6.5 ± 0.2 under microaerophilic
and stationary conditions) at 37 ◦C for 24 h [15]. The freshly grown culture of P. acidilac-
tici BD16 (alaD+) was centrifuged at 5000 rpm for 10 min at 4 ◦C to collect bacterial pellet.
The bacterial pellet was washed thrice using 20 mL sterile saline (100 mM NaCl) to ob-
tain a whitish-creamy pellet. Optical density of the inoculum was adjusted to 2.0 using
sterile saline solution (against blank saline at 600 nm). Inoculum (2% v/v) was added to
the secondary fermentation vessels each containing 100 mL fermented wheatgrass juice
obtained after primary fermentation. The fermented wheatgrass juice was kept undis-
turbed at ambient temperature (25 ◦C) for 7 days and then clarified by filtration using
muslin cloth. After settling of the bacterial pellet, racking was performed 2 to 3 times to
obtain clear fermented wheatgrass juice. Thereafter, the fermented wheatgrass juices
were stored at 4 ◦C in a refrigerator until further analysis.
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2.4. Biochemical Analyses of Wheatgrass Juices after Primary and Secondary Fermentation
2.4.1. Determination of Total Soluble Solids (TSS) and Moisture Content

The proportion of total soluble solids (TSS) was read using a hand-held refractometer
as ◦Brix at the point where the demarcation line between bright and dark sections crosses
the vertical scale [18]. Moisture content was estimated using following formula [19].

Total Moisture Content = 100− TSS o f the sample

2.4.2. Determination of Total Acids by Titration Method

The total acid content in different samples was determined in terms of percentage by
titration against 0.1N NaOH in the presence of phenolphthalein as indicator [17].

Percentage of acid = N ×V ×M.Eq.× 100/volume of sample (mL)
N = Normality of NaOH
V = Volume of sodium hydroxide used to reach the titration end point (mL)
M. Eq. (milli-equivalents of acid) = Molecular weight of the acetic acid /100

2.4.3. Determination of Total Proteins

The total proteins present in different samples was estimated using standard Lowry
method. To 1 mL fermented juice sample, 5 mL alkaline copper sulphate solution was
added and mixed thoroughly. It was allowed to stand undisturbed for 10–15 min at room
temperature, then 0.5 mL of Folin–Ciocalteau reagent was added to the samples. After
stirring, it was incubated at room temperature (25 ◦C) for 30 min to allow the development
of a blue-coloured complex whose absorbance was measured at 750 nm using UV-VIS
spectrophotometer. The amount of total protein was quantified using Bovine Serum
Albumin (BSA) calibration curve drawn for different concentrations of bovine serum
albumin ranging from 100 to 1000 µg/mL [20].

2.4.4. Determination of Ethanol Content

The ethanol content in fermented wheatgrass juice was determined using standard
distillation procedure [21]. Sample was prepared by mixing 1 mL of fermented juice with
30 mL distilled water. Distillation was performed at 80 ◦C in a round bottom distillation
flask and the condensate was collected in a 250 mL conical flask containing 25 mL dichromic
solution (0.1 M solution prepared by dissolving 34 g potassium dichromate in 100 mL
distilled water containing 325 mL of H2SO4 and volume was adjusted to 1000 mL). After
collection of the condensate, sample was incubated in a water bath at 60 ◦C for 15 min and
absorbance was measured at 600 nm using UV-VIS spectrophotometer against water as a
blank. The ethanol content in different samples was estimated in terms of percentage using
standard curve of ethyl alcohol drawn for alcohol concentrations ranging from 2 to 10% v/v.

2.4.5. Determination of Total Phenol Content

The clarified 1 mL fermented juice was mixed with 1.0 mL Folin–Ciocalteau reagent.
To the above mixture, 4.0 mL sodium carbonate solution (20% w/v) was added after
5 minutes of incubation at ambient temperature and then distilled water was added to
make total volume 10 mL. Sample was incubated at room temperature for about 2 h and
absorbance was measured at 765 nm. Total phenols were estimated using standard curve
of gallic acid (concentration range 10–100 µg/mL) and calculated in terms of gallic acid
equivalents-GAE [22].

2.4.6. Determination of Total Flavonoid Content

The sample was prepared by mixing 0.5 mL of clarified fermented juice with 1.5 mL
methanol. To the above sample, 0.1 mL of 10% aluminium chloride, 0.1 mL of 1 M potassium
acetate and 2.8 mL of distilled water were added and mixed thoroughly. Absorbance of the
sample was measured at 415 nm after incubating the reaction mixture at room temperature
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for 30 min. The total flavonoid content was estimated in terms of quercetin equivalents
from the calibration curve drawn in the concentration range from 100 to 1000 µg/mL [23].

2.4.7. Estimation of Total Anthocyanin Content

To the clarified fermented juice (4 mL), an equal amount of methanol solution (con-
taining 60% methanol in water containing 1% HCl) was added and the total volume was
increased to 10 mL using distilled water. The blank solution was prepared by mixing
4.8 mL of methanol solution and 5.2 mL of distilled water. The total anthocyanin content
was estimated in terms of cyanidin-3-glucoside by measuring absorbance at 530 nm [24].
Total anthocyanin content is:

(mg Cy3G/L) = A×M.W.× D.F.× 1000/∈ × L (1)

where, A = absorbance at 530 nm; ∈ = molar extinction coefficient for cyanidin-3-glucoside
(26,900); L = path length (1 cm); D.F. = dilution factor; M.W. = molecular weight for
cyanidin-3-glucoside (484.8).

2.4.8. Determination of Different Pigments

For the estimation of total carotenoid content, a given amount of clarified sample was
mixed with an equal volume of 80% acetone (1:1). The optical densities of chlorophyll A,
chlorophyll B and carotenes were measured at 663 nm, 643 nm and 470 nm, respectively [25].
A solution of acetone: hexane was prepared by mixing acetone and hexane in the ratio of
4:6. To estimate the contents of β-carotene and lycopene in different samples, the acetone
and hexane solution and fermented juice were mixed in equal proportions and absorbance
was measured at 453 nm, 505 nm, 645 nm and 663 nm [26].

Total carotenoids (mg/L) = 100A470 − 1.80A663 − 85.02A643/198
Lycopene content (mg/L) = −0.0458A663 + 0.372A505 − 0.0806A453
β-carotene content (mg/L) = 0.216A663 − 0.304A505 + 0.452A453

2.4.9. Determination of Colour Intensity

The absorbance of sample was directly measured at 420 nm (% Ye for yellow or brown
pigment mainly flavonoids, tannins and some anthocyanins), 520 nm (% Rd for red pigment,
mostly anthocyanins) and 620 nm (% Bl for blue pigment, mostly anthocyanins) using an
optical path length of 2 nm [27].

Tint of wine (redness of wine) is defined by ratio = A420/A520
Brilliance of wine, dA (%) = 1− (A 420 + A620/A520)× 100

2.5. Study of Phenolic Biotransformations in Fermented Wheatgrass Juice by Untargeted LC-MS
MALDI-TOF/TOF Technique

The clarified wheatgrass juice samples were acidified to pH 2.0 using 6N HCl; further,
solvent extraction was performed using an equal volume of ethyl acetate (1:1 ratio) to
extract phenolics [28]. Samples were stirred overnight at a speed of 50 RPM on a rotary
shaker. Then, the ethyl acetate fraction was collected by centrifugation at 3000 rpm for
5 min for further analysis by LC-MS-MALDI-TOF/TOF. For the metabolomic analysis,
the SYNPT-XS HDMS machine (Waters) on the separation module UPLC Acquity H
class series system was used. The samples were tested on C18 waters column (Acquity
BEH 2.1 × 100 mm, particle size 1.7 µm) using an injector volume of 5 microlitres at
Sophisticated Analytical Instrumentation Facility (SAIF), Punjab University, Chandigarh,
India. A gradient mobile phase consisting of 0.1% formic acid in water (solvent A) and
0.1% formic acid in acetonitrile containing 10% water (solvent B) was applied to the column
for LC-MS-MALDI-TOF/TOF analysis [29]. It was introduced in the system at a flow rate of
0.15 mL/min using the following solvent gradient: for 0 min 90/10, 2 min 90/10, 5 min
80/20, 10 min 70/30, 12 min 50/50 and 14 min 10/90 for solvents A and B, respectively. The
nitrogen and argon supply were maintained at pressures of 6–7 bars and 5–6 bars, respec-
tively. The following mass spectrometer conditions were adjusted during analysis: desolva-
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tion gas: 950 L/h, cone gas: 50 L/h, desolvation temperature: 450 ◦C, source temperature:
120 ◦C, capillary voltage: 3.22 keV, cone voltage: 50 V and collision energy: 4 eV. The chro-
matograms were obtained, and each major peak was further analysed for the identification
of different phenolic compounds by comparison with NIST Mass Spectral Library (available
at http://www.chemdata.nist.gov, access date on July 2022) and previous scientific reports.

3. Results

Baker’s yeast Saccharomyces cerevisiae and a lactic acid bacterium Pediococcus acidilactici
BD16 (alaD+) were used for preparing fermented wheatgrass juice. After filtration and rack-
ing, clarified samples were collected and subjected to different biochemical investigations
and untargeted metabolomic analysis by LC-MS-MALDI-TOF/TOF.

3.1. Biochemical Analysis of Fermented Wheatgrass Juice

The TSS of wheatgrass juice decreased from 23 to 6.2 ◦Brix after subjecting to two-
stage fermentation procedures. As TSS and total moisture are inversely correlated,
total moisture increased from 77.1 to 93.7% after fermentation. At the time of start,
TSS of wheatgrass juice was adjusted to 23 ◦Brix, which decreased gradually due to
conversion of sugar into alcohol by the fermenting yeast. The acidity of wheatgrass juice
(0.2 ± 0.017%) gradually increased to 1.08 ± 0.66% after primary fermentation then
dropped to 0.65 ± 0.069% after secondary fermentation. This might be due to the
fact that the acidity of fermented wheatgrass juice was modulated after secondary fer-
mentation by the lactate dehydrogenase activity of hetero-fermentative P. acidilactici.
The total protein content of unfermented wheatgrass juice was 4.6 ± 0.101 mg/mL,
while it was estimated to be 4.07 ± 0.325 mg/mL after primary fermentation and
4.52 ± 0.305 mg/mL after secondary fermentation. These variations can be attributed
to the activity of yeast and lactic acid bacteria. The fermented wheatgrass juice has low
ethanol content (3.7 ± 0.005%) compared to fruit wines, which under standard fermenta-
tion conditions can accumulate up to 14–15% ethanol [30]. This might be attributed to
the presence of certain phytolignans such as austrabailignan-7, dihydroguaiaretic acid,
fragransin D1 and pinobanksin arabinose in wheatgrass juice which have resulted in the
inhibition of alcohol dehydrogenase activity of yeast [31]. It has also been documented
previously that the ethanol content in wine depends on numerous biotic and abiotic
factors such as genotypic features of the fermentative strains, chemical composition
or the original sugar content of fruit or substrate, presence of inhibitory substances,
occurrence of competing pathways, fermentation temperature and time period for which
fermentation is carried out [32,33].

In the present study, it was observed that total phenols first increased during pri-
mary fermentation then decreased during LAB assisted secondary fermentation phase.
This decrease in the total phenolic content after secondary fermentation is attributed
to the conversion of phenols into polyphenols as described earlier [34]. The phenolic
content of wheatgrass juice was 0.41 ± 0.01 mg GAE/mL, while it was estimated to be
1.45 ± 0.04 and 1.36 ± 0.03 mg GAE/mL in fermented wheatgrass juice after primary
and secondary fermentation, respectively. Total flavonoid content in wheatgrass juice
(0.39 ± 0.0105 mg QE/mL) decreased after yeast fermentation (0.17 ± 0.011 mg QE/mL);
however, no distinct change in the flavonoids was reported after secondary fermenta-
tion (0.169 ± 0.0152 mg QE/mL). The total anthocyanin content of wheatgrass juice was
0.97 ± 0.166 mg Cy3G/L, which increased successively from 3.50 ± 0.67 mg Cy3G/L to
4.53 ± 0.057 mg Cy3G/L after primary and secondary fermentation, respectively. A
moderate increase in the total carotenoid content of fermented wheatgrass juice was also
reported. The total carotenoid content of wheatgrass juice (0.25 ± 0.017 mg/mL) increased
(0.31 ± 0.09 mg/mL) after primary and secondary fermentation, with a concomitant in-
crease in contents of beta-carotene and lycopene after two phase fermentation process.
Due to production of red pigments by fermenting yeast including anthocyanins such as
malvidin glycosides, pelarogonidin, peonidin glycosides; carotenoids such as zeaxanthin;

http://www.chemdata.nist.gov
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tannin namely deoxyschisandrin; and tyrosine derivative betanin, a reddish-brown hue ap-
peared in the fermented wheatgrass juice. The pigment also contributes to colour intensity
of fermented wheatgrass juice, which increased progressively during both the fermentation
phases. Table 1 shows the comparison of different biochemical properties observed in the
fermented wheatgrass juice after primary and secondary fermentation.

Table 1. Biochemical properties of fermented wheatgrass juice.

Parameters Wheatgrass
Juice After Primary Fermentation After Secondary

Fermentation

Total solid content (%) 22.9 6.3 6.2

Moisture content (%) 77.1 93.7 93.7

Total acids (%) 0.2 ± 0.01 1.08 ± 0.66 0.65 ± 0.06

Ethanol content (%) 0.0 3.4 ± 0.004 3.7 ± 0.005

Total proteins (mg/mL) 4.6 ± 0.10 4.07 ± 0.32 4.52 ± 0.30

Total phenols (mg GAE/mL) 0.41 ± 0.01 1.45 ± 0.04 1.36 ± 0.03

Total flavonoids (mg QE/L) 0.39 ± 0.010 0.17 ± 0.011 0.169 ± 0.015

Total anthocyanins (mg Cy3G/L) 0.97 ± 0.16 3.50 ± 0.67 4.53 ± 0.05

Total carotenoids (mg/L) 0.25 ± 0.017 0.31 ± 0.014 0.31 ± 0.09

Beta-carotenes (mg/L) 0.35 ± 0.01 0.71 ± 0.019 0.73 ± 0.021

Lycopenes (mg/L) 0.28 ± 0.003 0.33 ± 0.017 0.34 ± 0.015

Tint of wine 2.757 ± 0.023 0.020 ± 0.003 0.110 ± 0.016

Brilliance of wine (%) 6.6 ± 0.057 42.2 ± 0.121 55.0 ± 0.551

Values are presented as mean ± standard deviation of triplicates.

3.2. Phenolic Biotransformations in Fermented Wheatgrass Juice

In the present study, untargeted LC-MS-MALDI-TOF/TOF has been utilized for
the efficient and quick identification of phenolic derivatives present in fermented
wheatgrass juice. TOF/TOF has permitted the mass analysis of metabolites by cal-
culating their arrival time on the detector, with superior resolution. For the iden-
tification of individual compounds, their chromatographic retention times and par-
ent ion masses were compared with the scientific literature and data contained in
NIST Mass Spectral library (Figure 1). Table 2 lists different compounds detected
in wheatgrass juice after primary and secondary fermentation using LC-MS-MALDI-
TOF/TOF. Yeast has contributed to the development of bioactive phenolics such as
1-O-caffeoyl-β-D-glucose, 1-O-sinapoyl-β-D-glucose, 3-p-coumaroyl quinic acid, 6-C-
hexosyl-chrysoeriol-O-rhamnoside-O-hexoside, 8-prenyl naringenin, β-amyrin, betanin,
catechin, chrysoeriol-C-hexoside-C-pentoside, deoxyschisandrin, dihydrocaffeic acid
3-O-glucuronide, dihydroferulic acid sulphate, ellagic acid, esculin, gibberellin acid
8-hexose-gibberellin, kaempferol-rha-xyl-gal, laricitrin-3-O-rutinose, linoleic acid, mal-
abaricone B, malvidin 3-O-rutinoside, naringenin glucuronide sulfate, naringenin sulfate,
neoeriocitrin, p-coumaroyl-hexose-methylglutarate, pentacosenoic acid, pentahydroxy
dimethoxy flavones, petunidin-3-O-glucoside, pinobanksin arabinose, pinocembrin-O-
arabirosyl-glucoside, protocatechuic acid 4-O-glucoside, quercetin 7-O-malonylhexoside,
quinic acid, salviaflaside derivatives, salvianolic acid, taxifolin-3-O-glucoside, trans-
scirpusin A, trihydroxy-ent-kauranoic acid, vanillic acid 4-sulphate, violanone, vebonol
and zeaxanthin after primary fermentation.
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1 

 

 

Figure 1. LC-MS-MALDI-TOF/TOF chromatograms of (A) wheatgrass juice, (B) wheatgrass juice
after primary fermentation, and (C) wheatgrass juice after secondary fermentation. The x-axis
denotes retention time (min) and y-axis denotes percentage intensity. Inset pictures show identified
compounds in respective samples.

Secondary fermentation using P. acidilactici BD16 (alaD+) assisted in further aug-
mentation of the therapeutic index of fermented wheatgrass juice. In the present study,
important secondary metabolites (such as 2,4-dimethylphenol, apigenin-7-O-glucoside, ave-
nasterol, fragransin D1, fraxetin-7-O-sulfate, fucosterol, luteolin-8-C-glucoside, malvidin-
3-glucoside-4-vinyl (epi) catechin, myricetin 7-O-pentoside, myricetin 7-O-rhamnoside,
neotigogenin acetate, peonidin 3-O-sambioside-5-O-glucoside, rhein, spermidine-N-1,10-
di-caffeic acid-N5-p-coumaric acid and spermidine-N-5,10-di-p-coumaric acid-N-1-caffeic
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acid) were generated only after secondary fermentation, whereas wheatgrass metabolites
(such as 2-methyl-4,6- dinitrophenol, apigenin-7-O-glucoside, avenasterol, fraxetin-7-O-
sulfate, fucosterol and 2-hydroxy-4-methoxy-3,6-dimethylbenzoic acid) were also regener-
ated in the secondary fermentation process. Application of two-stage fermentation process
resulted in development of secondary metabolites with already proven therapeutic activi-
ties (such as anti-cancerous, anti-diabetic, anti-inflammatory, anti-microbial, anti-oxidant,
anti-viral, cardioprotective, gastroprotective, hepatoprotective, neuroprotective and osteo-
protective), in addition to enhancement of aroma, colour intensity and fragrance of the
finished product [1,29,35–38]; refer to Supplementary Table S1 for more detail.

Table 2. Characteristics of secondary metabolites identified in fermented wheatgrass juice by LC-MS-
MALDI-TOF/TOF.

Sr. No. Secondary Metabolites Class WGJ WGJ-PF WGJ-SF

1 1-(2,6-Dihydroxyphenyl)-9-
(4-hydroxy-3-methoxyphenyl) Phenol derivative + − −

2 1-O-Caffeoyl-β-D-glucose Hydroxycinnamic
acid glycoside − + * −

3 1-O-Sinapoyl-β-D-glucose Hydroxycinnamic
acid glycoside − + * −

4 2-Methyl-4,6-dinitrophenol Phenol derivative + − + ˆ

5 2,4-Dimethylphenol Phenol derivative − − + ˆ

6 3-Caffeoyl quinic acid Quinic acid & derivatives − + * +

7 3-or 4-hydroxyphenyl propionic
acid sulphate Hydroxymono-carboxylic acid + − −

8 3-p-Coumaroyl quinic acid Quinic acid & derivatives − + * −

9 6-C-hexosyl-chrysoeriol-O-
rhamnoside-O-hexoside Flavonoid − + * −

10 8-Prenyl naringenin Prenylflavonoid − + * −
11 β-Amyrin Triterpenoid − + * −
12 Ampelosin D Stilbenes + + −
13 Apigenin-6-O-glucoside Flavonoid glucoside + − −
14 Apigenin-7-O-glucoside Flavonoid glucoside + − + ˆ

15 Austrabailignan-7 Lignan + + +

16 Avenasterol Stigmastane + − + ˆ

17 Betanin (red pigment) Tyrosine derivative − + * −
18 5-Campestenone Sterol + + −
19 Carnosic acid Diterpenoid + − −
20 Catechin Flavonoid − + * −
21 Catechin gallate Flavans + − −
22 Chrysoeriol-C-hexoside-C-pentoside Flavonoid glucoside − + * −
23 Chlorogenic acid Quinic acid & derivatives − + * +

24 Cinnamic acid Cinnamic acid + − −
25 Cirsiliol Flavonoid derivative + + −
26 Deoxyschisandrin (pigment) Tannin − + × −
27 Delphinidin-3-glucoside Polyphenol + + +



Foods 2023, 12, 1624 10 of 18

Table 2. Cont.

Sr. No. Secondary Metabolites Class WGJ WGJ-PF WGJ-SF

28 Dihydrocaffeic acid-3-O-glucuronide Phenolic glycosides − + * −
29 Dihydroferulic acid sulphate Phenyl sulphates − + * −
30 Dihydroguaiaretic acid Lignan + − −
31 Docosenoic acid Unsat. fatty acid derivative + + +

32 Ellagic acid Polyphenol − + * −
33 Epicatechin Flavonoid + − −
34 Epicatechin gallate Flavonoid + − −
35 Esculin Coumarin glucoside − + * −
36 Eugenol Allylbenzene + − −
37 Ferulic acid Hydroxycinnamic acid + + +

38 Fragransin D1 Lignan − − + ˆ

39 Fraxetin-7-O-sulfate Hydroxycoumarin derivative + − + ˆ

40 Fucosterol Sterol + − + ˆ

41 Gibberellin acid 8-hexose-gibberellin Diterpenoid − + * +

42 Gallic acid Phenolic acid + − −
43 Gallic acid 4-O-glucoside Phenolic acid derivative + − −

44 2-Hydroxy-4-methoxy-
3,6-dimethylbenzoic acid Benzoic acid derivative + − + ˆ

45 Kaempferol-rha-xyl-gal Flavonoid glucoside − + * −
46 Laricitrin-3-O-rutinose Flavonoid glucoside − + * −
47 Linoleic acid isomer 1or 2 Unsat. fatty acid − + * −
48 Luteolin-8-C-glucoside Flavonoid − − + ˆ

49 Malabaricone B Diarylnonanoids − + * −
50 Malvidin-3-(6-O-acetyl)glucoside Flavonoid glucoside + − −
51 Malvidin-3-O-glucoside-4-vinylphenol Flavonoid glucoside + − −
52 Malvidin-3-O-rutinoside Flavonoid glucoside − + * +

53 Monotropein Monoterpenoid + − −

54
Malvidin-3-glucoside-4-

vinyl(epi) catechin
(pigment)

Flavanol-anthocyanin adduct − − + ˆ

55 Myricetin Flavonoid + + −
56 Myricetin-3-O-glucoside Flavonoid glucoside + + +

57 Myricetin-3-O-rhamnoside Flavonoid glucoside − − + ˆ

58 Myricetin-7-O-pentoside Flavonoid glucoside − − + ˆ

59 Naringenin glucuronide sulfate Flavanone glucuronide − + * +

60 Naringenin sulfate Flavanone − + * −
61 Neotigogenin acetate Triterpenoid − − + ˆ

62 Neoeriocitrin Flavanone − + * −
63 Pallidol (Resveratrol dimer) Stilbenoid + − −

64 p-Coumaroyl-hexose-methylglutarate Hydroxycinnamic
acid derivative − + * +
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Table 2. Cont.

Sr. No. Secondary Metabolites Class WGJ WGJ-PF WGJ-SF

65 Pelarogonidin (pigment) Flavonoid + + −
66 Pentacosanoic acid Sat. Fatty acid − + * −
67 Pentahydroxydimethoxy flavone Flavonoid − + * −
68 Peonidin Flavonoid + + −
69 Peonidin-3-O-glucoside (pigment) Flavonoid glucoside + + −

70 Peonidin-3-O-rutinoside-5-glucoside
(pigment) Flavonoid glucoside + + −

71 Peonidin-3-O-sambioside-5-O-glucoside
(pigment) Flavonoid glucoside − − + ˆ

72 Peonidin-3-O-rutinoside (pigment) Flavonoid glucoside + − −
73 Pentahydroxytrimethoxyflavones Flavonoid + + −
74 Petunidin-3-O-glucoside Flavonoid glucoside − + * −
75 Phlorizin Flavonoid glucoside + + −
76 Phloretin-3’, 5’-di-C-β-glucoside Diarylpropanoid + + +

77 Pinobanksin arabinose Lignan glycoside − + * −
78 Pinocembrin-O-arabirosyl-glucoside Flavonoid glycoside − + * −
79 Piperyline Alkaloid + − −
80 Procyanidin B1 Flavonoid + − −
81 Procyanidin B2 Flavonoid + − −
82 Procyanidin dimer gallate Flavonoid + + −
83 Prodelphinidin A-type Flavonoid + − −
84 Protocatechuic acid-4-O-glucoside Hydroxybenzoic acid derivative − + * −
85 Quercetin Flavonoid + + +

86 Quercetin-7-O-malonynyl-hexoside Flavonoid glucoside − + * −
87 Quinic acid Quinic acid − + * −
88 Riboflavin Vitamin B2 + + −
89 Rhein Anthraquinone − − + ˆ

90 Salviaflaside derivative Phenylpropanoid − + * −
91 Salvianolic acid B isomer 1or 2 Flavonoid − + * −

92 Spermidine-N1,10-di-caffeicacid-
N5-p-coumaric acid Polyamine-quinic acid adduct − − + ˆ

93 Spermidine-N5,10-di-p-coumaric
acid-N1-caffeic acid Polyamine-quinic acid adduct − − + ˆ

94 Syringetin Flavonoid + − -

95 Syringetin 3-O-hexoside Flavonoid glucoside + + +

96 Taxifolin Flavonoid + + -

97 Taxifolin-O-pentoside Flavonoid glucoside + + +

98 Taxifolin-3-O-glucoside Flavonoid glucoside − + * −
99 Taxifolin-3-O-rhamnoside Flavonoid glucoside + + +

100 trans-Scirpusin A Stilbene − + * −
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Table 2. Cont.

Sr. No. Secondary Metabolites Class WGJ WGJ-PF WGJ-SF

101 Tricin Flavonoid + - −
102 Trihydroxy-ent-kauranoic acid Diterpene derivative − + * −
103 Viniferal Hydroxystilbenoid + − −
104 α-Viniferin Stilbene + + −
105 Vanillic acid 4-sulfate Hydroxybenzoic acid derivative − + * +

106 Violanone Flavonoid − + * −
107 Vebonol Steroid − + * +

108 Zeaxanthin (pigment) Carotenoid − + * −
WGJ—wheatgrass juice; WGJ-PF—wheatgrass juice after primary fermentation; WGJ-SF—wheatgrass juice after
secondary fermentation; present (+), absent (−); * phenolics contributed by yeast; ˆ phenolics contributed by
P. acidilactici BD16 (alaD+).

In our previous study, recombinant Pediococcus acidilactici BD16 (alaD+) was shown to
contribute to development of several flavour enhancers (such as acetaldehyde, alaninol,
aminopentols, benzene methanol, 3-butynol, octanoic acid, ribitol) and therapeutic com-
pounds (such as actinobolin, adamantanemethylamine, aminononadecane, amphetamine,
8-azanonane, benzeneethanamine, guanosine, heptadecanenitrile, 86isopropyluriedoac-
etate, nortriptyline) and rimantadine for the value addition of ginger, ki87wi, plum and
rose wines [17]. Additionally, a proof-of-concept study was conducted in our laboratory to
evaluate the role of Pediococcus acidilactici BD16 (alaD+) in developing functional buttermilk
and soymilk drinks. Metabolomic analysis using GC-MS technique has revealed the en-
hancement of secondary metabolites (such as acetic acid, 2-aminononadecane, azanonane,
benzaldehyde, 1,2-benzenedicarboxylic acid, benzoic acid, chloroacetic acid, colchicine,
1-dodecene, heptadecanenitrile, hexadecanal, 3-octadecene, 4-octen-3-one, quercetin and
triacontane), which improved health promoting attributes of the fermented drinks. In
addition to this, LAB fermented drinks have considerably reduced bitterness, rancidity
and unpleasant odour due to reduction in the levels of 2-bromopropionic acid, formic acid,
8-heptadecene, 1-pentadecene and propionic acid [15].

4. Discussion and Conclusions

Fermentation is considered a vital tool for expanding nutritive, functional and sensory
traits of beverages [39]. In recent years, there has been an increased inclination of consumers
towards healthy, nutritive and functional beverages, which presumably are the optimal ve-
hicles to transport nutrients and bioactive compounds into the body. Fermented beverages,
especially, facilitate enhanced bioavailability of phytoconstituents such as anthocyanins,
carotenoids, dietary fibres, fatty acids, flavonoids, minerals, phenolic derivatives, vitamins,
and delivery of probiotics through dietary supplementation. The consumption of health-
promoting dietary supplements can be helpful in establishing a parallel line of defence
against important human diseases, particularly in their early stages of development [40].
It has been suggested that the daily intake of wheatgrass juice improves blood flow and
aids digestion and general detoxification of the body due to the presence of anti-oxidative
bioflavonoids such as apigenin, quercitin, luteoline and minerals in it [41].

In a study, wheatgrass juice was utilized for the value addition of kombucha—a
traditional fermented black tea drink. Sweetened black tea and wheatgrass juice were
mixed in different ratios and fermented using microbial consortium consisting of a yeast
strain, namely, Dekkera bruxellensis, and two strains of acetic acid bacteria viz. Gluconace-
tobacter rhaeticus and Gluconobacter roseus at 29 ± 1 ◦C for 12 days. The fermented drinks
have higher total phenol and flavonoid content, which also elevated their antioxidant
activity as compared to traditional kombucha. The beneficial effects of black tea were
enhanced after mixing with wheatgrass juice as compared to traditional kombucha because
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of elevated amounts of caffeic acid, catechin, chlorogenic acid, ferulic acid, gallic acid,
rutin etc. as compared to traditional ones. The highest antioxidant activity was observed
when black tea and wheatgrass juice were mixed in equal proportions and fermented
for three days [42]. In the present study, improved biochemical and phenolic profiles
of fermented wheatgrass juice were observed after two-stage fermentation using Saccha-
romyces cerevisiae and P. acidilactici BD16 (alaD+). Additionally, the use of Saccharomyces
cerevisiae contributed to bioconversion of coumaric acid, hydroxybenzoic acid, hydroxycin-
namic acid, quinic acid, etc. into respective derivatives; glycosylation and prenylation of
flavonoids; glycosylation of lignans; sulphonation of phenols; synthesis of carotenoids,
diarylnonanoids, flavanones, stilbenes, steroids, quinolones, di- and tri-terpenoids; and
tannin in the fermented wheatgrass juice. The study also displays the role of P. acidilactici
BD16 (alaD+) in expanding the functional profile of fermented wheatgrass juice by syn-
thesizing anthraquinone, sterols and triterpene, in addition to glycosylation of flavonoids
and lignins, and derivatization of benzoic acid, hydroxycoumaric acid and quinic acid.
The present study also provides sufficient biochemical basis to support previously ac-
claimed therapeutic benefits of freeze-dried wheatgrass powder, fermented wheatgerm
extracts, etc. mentioned in the scientific literature (as discussed in the Introduction). In
lieu of the results described above, it can be established that the utilization of two-stage
fermentation process improves nutritive as well as functional profile of the fermented
wheatgrass juice. However, dedicated in vitro and in vivo investigations of the fermented
wheatgrass juice need to be conducted for further validation of its nutritive, functional and
therapeutic benefits. Moreover, fermented wheatgrass juice can be used to supplement
traditional beverages to develop dietary supplements with health-promoting attributes.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/foods12081624/s1, Table S1: Detection of secondary metabolites in fer-
mented wheatgrass juice using LC-MS-MALDI-TOF/TOF and their characteristics [29,35–38,43–119].
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64. Nastić, N.; Borrás-Linares, I.; Lozano-Sánchez, J.; Švarc-Gajić, J.; Segura-Carretero, A. Comparative Assessment of Phytochemical
Profiles of Comfrey (Symphytum officinale L.) Root Extracts Obtained by Different Extraction Techniques. Molecules 2020, 25, 837.
[CrossRef]

65. Aydin, R. Conjugated linoleic acid: Chemical structure, sources and biological properties. Turkish J. Vet. Animal Sci. 2005,
29, 189–195.

66. Zolkeflee, N.K.Z.; Ramli, N.S.; Azlan, A.; Abas, F. In Vitro Anti-Diabetic Activities and UHPLC-ESI-MS/MS Profile of Muntingia
calabura Leaves Extract. Molecules 2022, 27, 287. [CrossRef] [PubMed]

67. Zhou, Y.-X.; Xia, W.; Yue, W.; Peng, C.; Rahman, K.; Zhang, H. Rhein: A Review of Pharmacological Activities. Evid.-Based
Complement. Altern. Med. 2015, 2015, 1–10. [CrossRef]

68. Qin, Z.; Zhang, B.; Yang, J.; Li, S.; Xu, J.; Yao, Z.; Zhang, X.; Gonzalez, F.J.; Yao, X. The Efflux Mechanism of Fraxetin-O-
Glucuronides in UGT1A9-Transfected HeLa Cells: Identification of Multidrug Resistance-Associated Proteins 3 and 4 (MRP3/4)
as the Important Contributors. Front. Pharmacol. 2019, 10, 496. [CrossRef] [PubMed]

69. Subbiah, V.; Zhong, B.; Nawaz, M.A.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Screening of Phenolic Compounds in Australian
Grown Berries by LC-ESI-QTOF-MS/MS and Determination of Their Antioxidant Potential. Antioxidants 2021, 10, 26. [CrossRef]

70. Khan, A.K.; Rashid, R.; Fatima, N.; Mahmood, S.; Mir, S.; Khan, S.; Jabeen, N.; Murtaza, G. Pharmacological Activities of
Protocatechuic Acid. Acta Pol. Pharm. 2015, 72, 643–650.
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